In our last post, which asked the question "Are ADHD genes Gender Dependent?" we introduced four genes believed to be associated with the disorder of ADHD:
- SLC6A4 gene
- COMT gene
- SLC6A2 gene
- MAOA gene
In the next four posts, we will investigate each of the 4 ADHD genes listed above.
SLC6A4 gene, gender effects, and ADHD:
Out of the four genes listed above, the SLC6A4 gene has the least gender-based effects. The authors of the original paper on gender effects of four genes actually concluded that the gender specific influence of SLCA4 gene was not statistically significant. Nevertheless, the authors briefly noted that there was a greater influence on males than females for this particular gene (in the summarizing abstract portion of the paper).The particular region of investigation on the SLC6A4 gene, which is located on the 17th human chromosome, was at a specific marker rs2066713 (If you are not familiar with this terminology, this is not important, it is just a way of citing a specific region of DNA and can be used to pinpoint a more exact location on a gene for studies on genetic variations, mutations, etc.). According to the study, at this specific marker on the SLC6A4 gene there was a higher likelihood that ADHD boys would receive the DNA base thymine ("T" for short) at this particular location than did ADHD females. This suggests that this "T" form (or "allele", which is a particular form or variation of a gene) at this particular spot on the 17th human chromosome which contains the SLC6A4 gene is more likely to be passed on to males with ADHD than females with ADHD. In other words, this "T" form of the SLC6A4 gene may be more associated with ADHD in males than in females. Of course, we must reiterate, that although a gender difference was observed, it was not sharp enough to be considered statistically significant, according to the original study.
Some other thoughts about the SLC6A4 gene and potential relevance to ADHD symptoms and behaviors:
- The SLC6A4 gene is often referred to by other more common names: the serotonin transporter gene (also abbreviated as 5-HTT, Serotonin Transporter, and SERT) is believed to be associated with a number of depression-related mechanisms. Interestingly, the link between the serotonin transporter gene and depression may also be susceptible to stress and other environmental factors. This gene is responsible for coding for and ultimately producing a serotonin transporter protein, which is frequently implicated in depression-related illnesses and is the target of antidepressant medications, such as Paroxetine (Paxil), Imipramine (Tofranil) and Fluoxetine (Prozac). In addition, the products of the SLC6A4 gene are also affected by amphetamines, which among some of the most common types of ADHD stimulant medications. In other words, the different forms of this SLC6A4 gene may actually play a role as to how an individual acts to a particular antidepressant or amphetamine medication. Again, keep in mind that there is often a fair amount of overlap of depression with ADHD (some experts argue that a "Depressive" form of ADHD should actually warrant its own ADHD subtype), so it is possible that gender based differences in this gene may be related to this hypothetical subtype in particular.
- However, other evidence suggests that the SLC6A4 gene may not be exclusively labeled as a "depressive gene". A study done on multiple genes believed to affect aggression and impulsivity (the latter being a common trademark of ADHD, while the former is occasionally seen extreme cases, although much more rarely, and typically only in the presence of additional comorbid disorders to ADHD), and found a nominal association between this SLC6A4 gene and cognitive impulsivity. Cognitive impulsivity, in essence, is associated with an individual making hasty decisions without carefully considering the consequences of one's actions, which frequently leads to negative or even dangerous outcomes. Not surprisingly, this is seen at much higher rates in ADHD individuals. Similar features are seen in ADHD individuals who have underactive functioning in the right frontal lobe region of the brain (a diagram of this region is given in an earlier blog post on differences in ADHD kids' brain regions), as well as those who have low tryptophan levels (which often correlates with depression and depression-like symptoms).
- There is also a possible connection of this particular SLC6A4 gene and autism, although numerous other studies have shown conflicting results. Nevertheless, given the fact that there appears to be a notable (but incomplete) overlap of ADHD and autistic symptoms, and the fact that autistic disorders are much more prevalent in boys, it is possible that there may be a tie-in between this "male-dominated" SLC6A4 gene form and a possible ADHD-autism connection.
- Finally, studies have linked variations in this serotonin transporter gene to bipolar disorders. This is also of interest because ADHD and bipolar disorders can occur together frequently and can sometimes be difficult to differentiate, especially at the pediatric level.
In the next few posts, we will be investigating three other ADHD genes believed to have gender-specific effects, which each have a potentially greater sex-related differences than this SLC6A4 gene.
6 comments:
Nice blog and good and very interesting articles about the causes of ADHD!
Please check out this website it's about a new way to treat ADHD using alternative methods:
www.adhdfree.net
Stimulant medications are the medical treatment of choice. There are a number of non-stimulant medications, such as atomoxetine, that may be used as alternatives. There are no good studies of comparative effectiveness between various medications, and there is a lack of evidence on their effects on academic performance and social behaviors. While stimulants and atomoxetine are generally safe, there are side-effects and contraindications to their use. Medications are not recommended for preschool children, as their long-term effects in such young people are unknown. There is very little data on the long-term benefits or adverse effects of stimulants for ADHD. Any drug used for ADHD may have adverse drug reactions such as psychosis and mania, though methylphenidate-induced psychosis is uncommon. Regular monitoring of individuals receiving long-term stimulant therapy for possible treatment emergent psychosis has been recommended. People with ADHD have an increased risk of substance abuse, and stimulant medications reduce this risk. Stimulant medications in and of themselves however have the potential for abuse and dependence. Guidelines on when to use medications vary internationally, with the UK's National Institute of Clinical Excellence, for example, recommending use only in severe cases, while most United States guidelines recommend medications in nearly all cases.
ADHD and its diagnosis and treatment have been considered controversial since the 1970s. The controversies have involved clinicians, teachers, policymakers, parents and the media. Opinions regarding ADHD range from not believing it exists at all to believing there are genetic and physiological bases for the condition as well as disagreement about the use of stimulant medications in treatment.
Such a valuable information sharing about ADHD Treatments. Thanks for sharing this post.
Ayurvedic treatment for multiple sclerosis in kerala
The great content sharing through your blog. Thanks for sharing.
ayurvedic treatment for brain stroke
Much appreciate you sharing this.
Post a Comment