Showing posts with label Dopamine. Show all posts
Showing posts with label Dopamine. Show all posts

Wednesday, February 10, 2010

Does Tyrosine for ADHD Actually Work as a Supplementation Strategy?(part 4)

We're attempting to answer the major question: Can ADHD symptoms be reduced via controlled supplementation with the amino acid tyrosine?

This is the fourth in an in-depth multi-part blog series on how and why this amino acid is so frequently prescribed and used off-label as an ADHD treatment method. Reviews and literature findings are mixed, but some physicians (and parents and individuals with ADHD themselves) swear by tyrosine as a hugely successful treatment strategy for ADHD. We have spent the last three posts examining:

  1. The different enzymes and enzyme systems used in tyrosine metabolism
  2. Which (if any) nutrient "helpers" or "co-factors" are required by these enzyme systems to function properly, and
  3. The implications these have on the neuro-biology of ADHD
I've included the following diagram in the last few posts, which highlights the major steps and intermediate products involved in the conversion process of tyrosine to dopamine and norepinephrine (the two desired targets of tyrosine supplementation with regards to ADHD treatment).
As a quick recap:
  1. In tyrosine and ADHD post #1, we gave a general overview of the process and the roles of dopamine and norepinephrine on ADHD biology. We also looked at how tyrosine enters the brain, and which mechanisms are important for facilitating its transport to the desired targets for therapeutic effects with regards to ADHD (Please note that different forms of tyrosine exist, but the form most common in nature and in chemistry in general is referred to as "L-tyrosine". When this blog mentions "tyrosine", it is this "L" form we are referring to in all cases unless specified otherwise).

  2. In the second post on ADHD and tyrosine, we focused on the first step of the process, the conversion of tyrosine to L-DOPA. This step heavily utilizes a specific enzyme called tyrosine hydroxylase. Tyrosine Hydroxylase is dependent on adequate supplies of certain nutrients such as iron, magnesium, zinc, tetrahydrobiopterin, and adequate levels of vitamin C (and antioxidants in general). While rampant supplementation is not necessary, inadequate levels of any of these agents (as well as a few others, such as copper) could potentially compromise the function of the tyrosine hydroxylase enzyme. It is important to note that the conversion of tyrosine to L-DOPA is typically the slowest and rate-limiting step of the whole tyrosine metabolism and conversion process to dopamine and norepinephrine. Thus, compromising this first conversion step can be potentially the most devastating with regards to impaired tyrosine metabolism for ADHD. This was why the post was a bit lengthy with regards to advocating for nutritional sufficiency.

  3. The third post on tyrosine and ADHD focused more on the question as to whether we could bypass the first step of the chemical process outlined above entirely by supplementing with L-DOPA (the second major step of the tyrosine conversion process) directly. We discussed the pro's and con's of using each (tyrosine or L-DOPA) as a starting point for ADHD treatment.
This brings us to today's post: the conversion of L-DOPA to dopamine. This process is heavily dependent on an enzyme known as DOPA decarboxylase. Here are some of the main components which need to be in place for this enzymatic conversion process to occur with efficiency:

DOPA decarboxylase belongs to a particular class of enzymes called aromatic amino acid decarboxylases. The term" aromatic" here refers to a particular type of "ring" structure in the chemical compound (if you don't have a background in organic chemistry, take a look at the chemical depictions of tyrosine, L-DOPA and dopamine shown below:


***A quick note on the chemical processes shown above and below: If you're not a chemist, don't worry, just look at what's changing in the pictures above and below, which represents the chemical structure of these different molecules involved in the tyrosine to dopamine conversion process. That hexagon-like structure on the left side of these molecules, (with the -OH groups coming off of it) is what makes these compounds "aromatic".

The enzyme tyrosine hydroxylase simply adds another "-OH group" to the top-left side this hexagonal ring to make L-DOPA out of tyrosine. The chemical process of this conversion was the point of discussion in our second blog post on ADHD and tyrosine supplementation. Our next enzyme-driven step leaves this "aromatic" hexagonal ring alone, and instead works on chemically modifying the right side of the molecule, as we'll see in a second. ***

The term originally comes from the fact that chemicals with this type of built-in structure often gave off a particular aroma. Aromatic amino acid decarboxylases essentially take a carbon dioxide off of these six-membered rings, which greatly changes the chemical properties and reactivity of the chemical compound in most cases. (Do you see how the right end of the molecule L-DOPA is "chopped off" to get to dopamine in the step shown below? That is the work of these decarboxylase enzymes).

Of these decarboxylase enzymes (there are several different variations), the "best" one for this conversion process is called DOPA decarboxylase.

Although DOPA decarboxylase can be indirectly affected by several different nutrients (specifically shortages of nutrients), the main one involved in this step is called pyridoxal phosphate. Pyridoxal phosphate is the chemically "active" form of vitamin B6.

We have spoken about the merits of vitamin B6 with regards to ADHD and how it works in conjunction with other nutrients in previous posts. For example, getting B6 into this desired pyridoxal phosphate form requires zinc (another reason why adequate zinc levels are necessary for optimal tyrosine metabolism). It also appears that vitamin B6 works well alongside magnesium as an ADHD treatment combination strategy. Finally, vitamin B6 plays a role in the metabolism of omega-3 fatty acids (omega-3 rich fish oil is a common "natural" treatment method for ADHD)

Because of its vital role as a "co-factor" or "helper" of the DOPA decarboxylase enzyme, which is responsible for converting L-DOPA to dopamine, it is imperative that we avoid shortages of this essential B vitamin. A rough estimate of recommended daily intake levels of vitamin B6 can be found here. Keep in mind that over 100 different other enzymes also depend on vitamin B6 and its derivatives, so keeping adequate stores of this vitamin is essential.

In addition to keeping up necessary vitamin B6 levels to help the DOPA decarboxylase enzyme's ability to function properly in the second major chemical step of tyrosine metabolism, we must also mention an often-overlooked issue with the enzyme: the interaction of DOPA decarboxylase with another common neurochemical signaling agent called serotonin.

Serotonin is generated from another important amino acid called tryptophan. Tryptophan (like tyrosine) is an aromatic amino acid, and the two amino acids have several structural and functional similarities. While this may sound like a good thing at first, it can lead to some problems.

One of these problems is the fact that if two chemicals share similar structural characteristics, enzymes which act on one may also act on the other. If the structural characteristics are close enough, the two agents can even compete for the same enzymes, or effectively block each other off or crowd each other out.

This is precisely what can happen with the amino acid tryptophan and its product serotonin. The tryptophan to serotonin process also uses these aromatic amino acid decarboxylase enzymes (and interestingly, also uses vitamin B6 as a cofactor in the process. This is yet another reason why we want to keep B6 levels up to speed!).

**A generalized conversion process of tryptophan to serotonin is shown below. Note that this pathway is analogous to the tyrosine to dopamine pathway in a number of ways, including the addition of a hydroxyl (-OH) group in the first step and a decarboxylation (essentially the removal of carbon dioxide) in the second step, which utilizes both the aromatic amino acid decarboxylase enzymes and pyridoxal phosphate (vitamin B6). Do you see how these two processes can easily be in competition with each other for resources (the enzymes as well as the vitamin B6).Additionally, the end product of the above process, serotonin, can also effectively shut the enzyme DOPA decarboxylase down. This process, in which an enzyme is essentially shut down by its final products, is often used in the body to keep from overproducing one particular kind of substance. It is known as feedback inhibition, and is a very common and crucial process for retaining chemical balances in the body.

However, if large amounts of tryptophan are present, not only can the crowd out tyrosine for the dopa decarboxylase enzyme, but the final product of this tryptophan (serotonin), can essentially shut the enzyme down for both processes. In other words, it's a double-whammy for tyrosine, along with the implications for its use as an ADHD treatment strategy.

Actually, make that a triple-whammy. Remember how we mentioned that chemical compounds of similar structure can often crowd each other out? It turns out that tyrosine and tryptophan both compete with each other for transport into the brain. In the first post on this topic, we talked about the blood brain barrier, and how crossing this biochemical barrier was needed to successfully deliver the drug or nutrient-based treatment to the desired brain regions.

This is not meant to blast tryptophan or serotonin. Both chemicals are crucial to a number of important bodily functions. Rather, it is the timing of the administration of these nutrients with which we should be careful. The main strategy here is to try to avoid taking tryptophan-rich foods alongside tyrosine supplements. Some foods which are high in tryptophan can be found here. Keep in mind, however, that many of these tryptophan-rich foods may also be high in tyrosine (such as wild game and several types of seeds like pumpkin seeds). Some of the more tryptophan-concentrated foods are milk, turkey, and legumes (chick peas, peanuts, etc.), so it would be a good idea to refrain from these rich sources of tryptophan for a couple of hours on either side of tyrosine supplementation.

So with regards to the second major step of tyrosine supplementation, the conversion of L-DOPA, we should remember these 2 main things:

  1. Keep up adequate levels of vitamin B6 to help the DOPA decarboxylase enzyme function at peak efficiency.
  2. Try to avoid taking in tryptophan-rich foods anytime near the time you take your tyrosine supplements. This will help you avert most of the competitive biochemical processes between these two nutrients, and can ultimately improve the efficacy of tyrosine as an ADHD treatment strategy.

Add to Technorati Favorites

Friday, February 5, 2010

Does Tyrosine for ADHD Actually Work as a Supplementation Strategy? (part 3)

Can we treat ADHD symptoms via Tyrosine supplementation?

This is the 3rd post in our series of discussions regarding ADHD and supplementation with the amino acid tyrosine. Some physicians (and ADHD patients) swear by it, but the results in the literature and clinical studies are often muddled. Why is this the case?

Over the past few postings, I have been going over the metabolic pathway of how the body converts the amino acid tyrosine to our desired brain chemicals of dopamine and norepinephrine. Imbalances of both dopamine and norepinephrine are typically seen in ADHD, and this imbalance is the target of most ADHD medications (especially the stimulants) during their modes of action.

Here is the metabolic pathway on Tyrosine to Dopamine and Norephinephrine again (you can click on the image to get a larger view, or see the original image source here):

In our first post on ADHD and tyrosine supplementation, we went through the overview of this pathway. In our last posting, we went through the first step of the process: the conversion of tyrosine (also referred to as L-tyrosine) to DOPA (also referred to as L-DOPA, Levodopa and a number of trade names such as Dopar, Laradopar or Sinemet), and the enzymes and nutrient co-factors involved in this conversion process. L-DOPA is a common treatment method for patients with Parkinson's Disease.

I was going to start with the next step of the process today: the conversion of L-DOPA to dopamine, and the major enzymes involved. However, one of our readers from the previous posting on the conversion of Tyrosine to L-DOPA, posed an excellent question on a topic I failed to address (which may be on the minds of several readers). As a result, I will dedicate the remainder of this post to this question and save the next step of the tyrosine to dopamine pathway for the next blog entry.

LynneC asked about the advantages of supplementing with tyrosine vs. supplementing directly with L-DOPA. As we saw in the previous posting on tyrosine supplementation for ADHD, the tyrosine to dopamine conversion requires one major enzyme (tyrosine hydroxylase) and several secondary enzymes (to produce some of the compounds needed to help the tyrosine hydroxylase enzyme to function properly), as well as nutrient co-factors such as iron, zinc, magnesium, and even antioxidants or reducing agents such as vitamin C.

Further complicating the issue, we saw that individual variation across the gene pool leads to different forms of this tyrosine hydroxylase enzyme, some of which are notably more effective or "potent" than others. In other words, some people are more disposed to having an efficient metabolic conversion of tyrosine to L-DOPA than others.

If this is the case, why should we mess with tyrosine at all? Shouldn't we just bypass this first step of the process entirely and start with L-DOPA? Here are a few things to consider:

  1. Supplement Availability: L-Tyrosine is available over-the-counter. However (until relatively recently), L-DOPA required a prescription. This is not the case anymore, however, as L-DOPA supplements are available in countries like the United States (I believe that a prescription is still required in Canada, however, but I could be wrong).

    Blogger's note: Even though both of these agents are available without a prescription, this blogger believes is is EXTREMELY important for you to talk to your physician before giving either of these supplements a try.

    Both tyrosine and L-DOPA can undergo biochemical transformations via a number of different pathways (i.e. not just in the conversion to catecholamines in the brain such as dopamine and norepinephrine). Both can interact with other medications (especially certain classes of anti-depressants known as MAOI's or monoamine oxidase inhibitors), as well as with each other, and overdosing is possible. Additionally, individuals with certain forms of cancer (especially skin cancers) or eye disorders such as glaucoma are typically instructed to avoid both treatments entirely. PLEASE check with a physician before starting either of these as a therapy for ADHD or ANY other reason.


    ADVANTAGE with regards to ADHD treatment: Tyrosine


  2. Cost: I did a quick search on the costs of both supplements (keep in mind that brand names, strengths and quantities can cause extreme variation), and from what I've seen, L-DOPA often costs somewhere from about $65 to $150 US dollars for 100 tablets. Please note that L-DOPA typically comes in a combination form of Levodopa and another compound called Carbidopa (Carbidopa greatly aids in the absorption of Levodopa and helps minimize unwanted side-reactions of the Levodopa drug, so almost all standard formulas now exist in this Levodopa/Carbidopa tandem). For tyrosine, the cost is much lower, as I've seen ads online for a bottle of 100 capsules (500 mg strength, note that many individuals who supplement with tyrosine take doses around this level 3 times a day) for only $2 to $3 dollars a bottle. Clearly, the cost of taking L-tyrosine is much lower.

    ADVANTAGE for treating ADHD: Tyrosine


  3. Step in the conversion pathway: In the previous post, we saw how certain enzymes (tyrosine hydroxylase) and nutrient "co-factors" (co-factors essentially function as "helpers" to the enzyme, making it function more effectively. If these co-factors are missing or deficient, the enzyme is often compromised, and the metabolic conversion process is reduced. In this blogger's opinion, co-factor shortages are one of the most overlooked reasons why natural, dietary or supplementation strategies for ADHD treatment often fail), such as iron, zinc, magnesium, and vitamin C are needed, either directly or indirectly to aid the process.

    ADVANTAGE for ADHD treatment: L-DOPA*
    * Starting directly with L-DOPA bypasses these factors or complications (but poses its own set of challenges, as we'll see later in this post, more about this in a minute).


  4. Transportability across the blood-brain barrier: We talked at length about the blood-brain barrier in the past two posts, but to recap: The blood-brain barrier is a biochemical barrier designed to keep potentially hazardous or toxic compounds (that accidentally get into the blood) from getting into the brain (where these substances are often much more devastating). It also acts like a sort of "filtering" system, controlling or regulating the transport of "good" compounds in the brain, reducing the risk of imbalances from these chemicals.

    Unfortunately (especially for drug manufacturers), this barrier also blocks out many potential therapeutic agents, so drugs targeting specific brain regions must be chemically designed to pass through this blood-brain barrier to be effective. It is worth noting that both tyrosine and L-DOPA can cross through this barrier, so both are acceptable methods of delivery to increase or balance out dopamine and norepinephrine levels in the brain.

    On a side note (and mentioned in our previous discussions on the matter), dopamine and norepinephrine typically are NOT able to pass through the blood brain barrier, meaning that these compounds need to be manufactured inside of the brain. This is why we cannot supplement with either of these agents directly.

    ADVANTAGE for ADHD: A draw. Both Tyrosine and Levodopa can cross the blood-brain barrier**

    **
    We will see in the next few points, how this "tie" between the two may not be entirely true.

  5. "Target" specificity: Here is where the real difference lies. In the past few posts, we have been vague with regards to the specific brain regions in which chemical imbalances of dopamine and norepinephrine are found in the ADHD brain. It is important to note, that these deficiencies/imbalances are not uniform throughout the body (or even the brain) in the ADHD individual.

    Certain brain regions are frequently identified as target sites of chemical imbalances (which typically exist as deficits, not excesses) of the neurotransmitters dopamine and norepinephrine. By no means is this list extensive, but two brain regions which are commonly associated with shortages of these signaling chemicals are the striatum and the prefrontal cortex (as an interesting aside, these 2 brain regions have been found to be proportionally smaller in ADHD individuals according to some studies and bloodflow patterns to the prefrontal cortex have been found to be different in the ADHD brain vs. the brains of patients with other disorders such as Obsessive Compulsive disorders).
    Shown above is a picture of an individual's brain. We are looking from the top down on a patient facing forward (the front is towards the top of the page). Several key "ADHD brain regions" are highlighted. The rough location of the prefrontal cortex, shown in brown, is a major region of importance where ADHD treatment is of concern. The green, red and blue regions represent approximate locations of sub-components of a brain region collectively called the corpus striatum. Both the prefrontal cortex and the corpus striatum regions of the brain are thought to be common sites of imbalance of the brain chemicals dopamine and and norepinephrine.

    Getting back to our main point here, however, is the fact that supplementation with tyrosine typically reaches its targets with much more specificity than does L-DOPA. In other words, if target region specificity is what we're after, then supplementation with tyrosine shows a slightly better track record, at least according to the literature reviewed by this blogger. Keep in mind, however, that this assertion hinges on only a few older studies, and the findings are far from definite.

    SLIGHT ADVANTAGE for treating ADHD: Tyrosine


  6. Fewer negative side effects: This ties in with the previous point, to a certain extent. L-DOPA, is, and continues to be, a treatment for Parkinson's, and not designed specifically for ADHD. However, in addition to being a chemical precursor to dopamine and norepinephrine, L-DOPA can also be converted to the agent melanin (which is responsible for skin pigmentation, among other things). The problem with this, however, is the fact that this conversion process can sometimes go overboard, and result in rapid generation and buildup of this (and related) compounds, increasing the risk of melanoma and related skin cancers.

    The actual magnitude of this L-DOPA/skin cancer association, however, is often questionable. While higher rates of skin cancer are seen in Parkinson's patients treated with L-DOPA, this finding is often negated by the fact that the cancer was present before the start of the L-DOPA treatment. Furthermore, general medical recommendations are often to refrain from L-DOPA or tyrosine supplementation in Parkinson's patients who are in various stages of these cancers. In other words, tyrosine may not be much better in this regard.

    Both tyrosine and L-DOPA have limitations, and potentially negative interactions. This includes kidney and liver dysfunctions, cases of depression where specific anti-depressants called MAOI's (short for monoamine oxidase inhibitors) are taken (both tyrosine and L-DOPA can negatively interact with MAOI function).

    Possible buildup of the compound homocysteine (a pro-inflammatory agent which has been implicated in everything from heart disease and cardiovascular disorders to depressive symptoms to cancer) can also be linked to tyrosine and L-DOPA intake, because both can serve as chemical precursors to this potentially dangerous compound. We will see how homocysteine ties in to all of this within the next few posts (as we work our way down the tyrosine to dopamine and norepinephrine pathway), and how its buildup can be reduced by taking in adequate levels of certain B vitamins and other nutrients. More on this later.

    In the meantime, please realize that there are hundreds of different ways tyrosine and L-DOPA levels can affect the body, so trying to classify one as "safer" is not necessarily so cut-and-dry. However, in this blogger's opinion, tyrosine, since it is a naturally occurring dietary food-source, has the advantage of over L-DOPA in that it is one step closer to "nature". Tyrosine is typically less potent than L-DOPA, so a higher dosage of tyrosine is typically required to get the same effects (in other words, we shouldn't be comparing, say a 500 mg dose of tyrosine with a 500 mg dose of L-DOPA, the effects of L-DOPA at this dose would be much more pronounced).

    Furthermore, as we have seen in the last post on tyrosine and ADHD, the enzyme-mediated conversion of tyrosine to L-DOPA is actually limited or shut off by the generation of the catecholamine "end-products" dopamine and norepinephrine. When high levels of these compounds are generated under normal conditions, these catecholamine compounds actually bind to and inhibit the enzyme tyrosine hydroxylase (which converts tyrosine to L-DOPA), thereby limiting further tyrosine to dopamine conversion.

    In other words, it appears that tyrosine has slightly better designed "control-switches" to keep its end products in check than does L-DOPA. We may be splitting hairs here (since both tyrosine and L-DOPA are natural metabolites of the body, both can be quite safe if the correct levels are taken and none of the pre-existing conditions exist or competing medications are being used), but according to all of the information this blogger currently has, tyrosine supplementation for ADHD treatment seems to be the safer bet here.

    ADVANTAGE: Tyrosine (just make sure to consult with a physician before trying this supplement, even though it is readily available over-the-counter).


  7. Overall effectiveness and potency: While both L-Dopa and tyrosine have often been prescribed for ADHD as more natural or "gentler" alternatives to pharmaceuticals, and "success" stories abound on individual cases, the overall literature tends to be less praise-worthy. From the studies this blogger has seen most of them show a temporary boost in effectiveness, but the positive results are often short-lived. Tolerance generally seems to be an issue, as in the case of a small study on direct tyrosine treatment for ADHD. In this study, the effectiveness of tyrosine wore off after 2 weeks. A similar study was done with L-DOPA (levodopa) on ADHD boys, and the results were similar. Initially, there was a positive response, but these results were also short lived.

    Curiously, most of these studies involving direct tyrosine or L-Dopa dependent treatment of ADHD are relatively old ones, most of which took place in the early 1980's (many were done by the same research group). There currently does not seem to be a whole lot of new material on this topic (at least to the best of this blogger's current knowledge).

    Furthermore, neither of these studies co-supplemented with the aforementioned nutrient "cofactors" to help with the metabolism and conversion to dopamine or norepinephrine. There is no telling what the status of magnesium, zinc, iron, or antioxidant levels (all of which can have an effect on tyrosine metabolism, as we've seen in the previous post on tyrosine supplementation for ADHD).

    Additionally, another nutrient called pyridoxal phosphate also plays a role in the next step of the chemical conversion process of L-DOPA to dopamine (pyridoxal phosphate is a derivative of vitamin B6 which is used to help the enzyme dopa decarboxylase to function properly. We will be investigating this nutrient/enzyme pairing in the next post, when we look at the next step of the dopamine conversion process).
    Levels of this key ingredient (at least in this blogger's opinion) need to be factored in when we evaluate the true merits of tyrosine or L-DOPA treatment for ADHD and related disorders.

    ADVANTAGE as an ADHD treatment method: Too close to call. In addition to their individual usage, tyrosine/L-DOPA/carbidopa (we will discuss why this carbidopa compound is often used alongside L-DOPA in the next section) can be used together to boost each others' effectiveness. Anecdotal reports laud the effectiveness of tyrosine/L-DOPA/carbidopa in combination as an effective ADHD treatment, but again, detailed clinical trials specifically designating ADHD are relatively scarce. In other words, although the literature findings on the subject seem to be scarce and somewhat discouraging, additional factors (such as the extra nutrients and enzyme co-factors which we are currently laying out) could possibly lead to more effective studies with more promising results on the topic of ADHD treatment via tyrosine and/or L-DOPA supplementation.

Add to Technorati Favorites

Saturday, January 3, 2009

Gene Variations Which Affect Attention Control

A couple weeks ago, I posted some information on a specific gene thought to be connected with ADHD called COMT (short for Catechol-O-Methyltransferase). This gene is located on the 22nd human chromosome, and can exist in different forms. What is important to note is that the amount of stimulant medication necessary for effective dosing for ADHD and related disorders is often dependent on which forms of this gene an individual possesses. To view this (somewhat lengthy) post on COMT, please click here.

In this previous post, I mentioned that the COMT gene codes for an enzyme which goes by the same name. This COMT enzyme has two forms of interest with regards to our discussion, the "Met" form and the "Val" form. "Met" and "Val" are short for Methionine and Valine, respectively, which are two different amino acids seen at the 158th spot on the COMT enzyme.

The reason that this is so important and relevant to the topic of ADHD is that this relatively small difference in enzyme composition can have a huge effect on how much of a stimulant medication is required to reach peak chemical efficiency in a region of the brain called the prefrontal cortex.

The prefrontal cortex is located in the brain behind the forehead, and is heavily associated with the disorder of ADHD. What a recent study found was that individuals with the "Met" form of the enzyme often require significantly less "assistance" from stimulant medications to reach peak efficiency in this critical brain region during cognitive tasks, than do individuals with the "Val" form of the enzyme. To illustrate this, please refer to the diagram below, which was seen in this previous post.:




Now it appears that, in addition to the prefrontal cortex region of the brain, these two variations in this COMT gene are responsible for what goes on in other brain regions as well. This region is called the cingulate cortex. The region of this brain section which we are most interested in for this discussion is about 2/3 of the way back, closer to the center of the brain. This region of interest is around area 31 on this brain map below, which is referred to as the dorsal cingulate. Here, the word "dorsal" means "back", and the word "cortex" refers to the outer layer. As a reference, the prefrontal cortex area of the previous discussion of interest is around region 9 of the brain map below:
There are a couple of differences worth mentioning between these two brain regions. The prefrontal cortex region mentioned in the previous post is responsible for functions such as working memory (which is explained in more detail here), as well as screening out unimportant information and inhibiting inappropriate responses. We can see how this is relevant to ADHD, as improper function on this region can lead to excessive distraction by unimportant stimuli and poor impulse control. To use the analogy of a car, we might think of this brain region as a type of "braking system" for the brain.

If the prefrontal cortex region acts as the brakes, the cingulate region of the brain can be thought of as a type of "gear shifter". In addition to being relevant to ADHD, this cingulate region of the brain can also be a major factor in disorders such as OCD (Obsessive Compulsive Disorder). In the case of OCD, the cingulate region is overactive. As an analogy, think of pushing on a gear shift with too much force that the vehicle gets "stuck" in a specific gear. In the same sense, individuals with OCD often get "stuck" on a certain fixation whether it be washing one's hands repeatedly, counting cracks on a sidewalk, or repeatedly checking to make sure the oven is off.

As an interesting aside, there has been some interesting discussions on the role of the cingulate region of the brain with regards to governing events involving motor control such as hand movements. This may be one of the reasons why individuals with ADHD often have poor handwriting and difficulty taking notes.


There are some differences in chemical function between these two brain regions (the cingulate and the prefrontal cortex) as well. For the prefrontal cortex region, there are relatively few receptors and transporters for the brain chemical dopamine. Dopamine is a key ingredient for proper signaling between neurons, and a specific balance of this chemical inside and outside of nerve cells is critical for proper function. For individuals with ADHD, there is often a shortage of dopamine in the areas in between nerve cells, so this inside-outside balance is off. Many stimulant medications work to "correct" this imbalance by blocking the transport of dopamine from the outside of cells to the inside of cells in specific regions of the brain. In contrast to the prefontal cortex region of the brain, where there are relatively few of these dopamine transporting and receiving agents, the cingulate region of the brain has a much higher concentration of these dopamine-regulating areas.

The reason that the COMT enzyme is so relevant to all of this, is that this enzyme is capable of metabolizing and breaking down the chemical dopamine. We have previously seen that the "Val" form of this enzyme is more effective at metabolizing dopamine than the "Met" form. As a result, individuals who exclusively have the "Val" form, are often more prone to a shortage of free dopamine than individuals with the "Met" version.

What does this all mean?

Several studies have indicated that the cingulate region is very important in monitoring conflict and regulating behavioral control as well as governing challenging decision making processes. With regards to our discussion here, if an individual is taking an online exam and a cricket is chirping outside, the cingulate region is in part responsible for which "stimulus" is more worthy of attention. Therefore, this cingulate region of the brain plays an important role with regards to attentional control.


A brief recap of the study on COMT gene variations on the cingulate brain region:

A comprehensive study was done by Blasi and coworkers to investigate the differences between the "Met" and "Val" forms of the COMT gene with regards to attentional control. They found that individuals who had both copies of the "Val" form of the COMT gene (remember that humans typically possess two copies of a gene, one coming from each parent) had much more difficulty maintaining attention than did individuals who had both copies of the "Met" form of the gene. Individuals who had one "Val" form and one "Met" form fell in between.


Blasi's group found that in order to maintain attention for a prolonged period of time (i.e. screening out distracting stimuli that interfere with the desired task at hand), the "Val" individuals had much more activity going on in this cingulate region of the brain. In other words, this cingulate brain region had to work harder (i.e. was less efficient) for the individuals who had both copies of the "Val" form of the COMT gene, than for those who had one copy of each. Individuals who were fortunate to have both copies of the COMT gene be of the "Met" form showed the most efficient (i.e. less work needed) cingulate region of the brain, and were more effective at maintaining attention to the desired task at hand.


What is interesting to note is that this group tested the subjects on different tasks which required varying degrees of attentional control. This was done by asking the individuals to analyze the relative orientation of different sized arrows on a computer screen (see here for the the diagrams used in the study). Notice that there are three different sizes of arrows, in which seven small arrows make up a medium sized arrow and six medium sized arrows comprise a large arrow. Subjects were asked to answer which direction a given-sized arrow (either "small", "medium" or "large") was facing. Note that for the "easy" attention tasks, all 3 sizes of arrows were pointing in the same direction, while in the "medium" and "hard" attention-based tasks, the different-sized arrows were pointing in different directions.


Results of the attention-based study: The study found that the genetic effects were much more pronounced for the difficult attention control tasks than for the easier tasks. In other words, individuals with the "Met" forms of the COMT gene had a much less difficult time with this task than did individuals with the "Val" forms of the COMT gene (that is the cingulate region of the "Met" individuals required less brain activity to complete the task than the cingulate region of the "Val" individuals).

This is analogous to the results from a brain activity study involving the differences in the "Val" and "Met" gene forms on a working memory task, which utilized the prefrontal cortex region of the brain (you can find the blog post on this study here). Based on this prefrontal cortex study, the more difficult the working memory task, the more pronounced the difference between the "Met" and "Val" individuals (like in the cingulate study, the "Val" individuals' brains had to work harder). Brain activity in both studies was determined by measuring changes in blood flow to these brain regions required to complete the task, using an oxygen-detecting system (larger increases in blood and oxygen flow to a specific brain region signify harder work by that portion of the brain).


Key differences between the two brain regions regarding Val and Met differences:

While the two studies of the two different brain regions and their respective tasks (the prefrontal cortex and working memory tasks vs. the cingulate region and attention control tasks) shared a high degree of overlap in their results, there were some key differences:

  • While individuals with the "Val" form of the COMT gene required greater effort in their prefrontal cortex region of their brains (as detected by blood oxygen sensors) than those with the "Met form", this overall increase in effort did not correspond to worse performances in the tests by the "Val" individuals. In other words, for tasks involving working memory, it appears that while "Val" individuals have to work harder, they can still perform at comparable levels of accuracy to "Met" individuals. However, "Val" individuals may have a more difficult time when it comes to the cingulate region, as there was a connection between an increase in required brain activity and actual performance on these tasks. In other words, "Val" individuals could be out of luck when it comes to matching performances with their "Met" counterparts when it comes to functioning during very difficult attention-maintaining tasks. Of course this is not to say that practice, training and medication treatment cannot overcome at least some of this inherent genetic disadvantage.


  • When it comes to task performance requiring attention and working memory, it appears that differences in dopamine-governed signaling processes (such as those arising from "Val" or "Met" forms of the COMT gene), it appears that accuracy differences in performing tasks is more pronounced in cingulate regions of the brain, where differences in speed, reaction time and even premature decision-making are more evident in the prefrontal cortex region of the brain.

  • Within the context of this post, it suggests that "Val" individuals are more prone to slower processing, poor reaction timing and impulse control on tasks involving the prefrontal cortex (such as tapping into working memory in tasks such as recalling and utilizing stored information such as math formulas or physics equations), and more likely to be error-prone with regards to tasks involving the cingulate region (such as discriminating between multiple conflicting stimuli and maintaining attention to the "correct" one).

  • Taking the above one step further, this possibly suggests that if an untreated ADHD individual who has the "Val" version of both genes was taking a physics test, he or she could likely perform in a comparable manner to that of a similar individual with the "Met" form, if he or she had extra test time. This is because this type of test would likely involve working memory (i.e. recalling and then using an appropriate formula for a particular physics problem). However, if a continuous external distraction was present (such as a loud air conditioner or a flickering light or an attractive member of the opposite sex seated nearby), having extra test time would be less likely to even the playing field for our poor "Val" individual. This of course, may be stretching and over-simplifying quite a bit (of course we know that there are way more factors involved than just this), but these somewhat subtle genetic differences could possibly have some implications when it comes to discerning and providing accommodations for individuals with learning disabilities, especially in an academic or work environment.
These findings have medication implications as well. Based on the Prefrontal Cortex / Working Memory studies with regards to the "Val" and "Met" forms of the COMT gene, we have seen that differences in ADHD medication dosage are affected, with "Val's" typically requiring more stimulant medications than "Met's" to achieve optimal dopamine balance. However, in the cingulate brain region, another key signaling chemical called serotonin also comes into play. As mentioned previously, the cingulate region is thought to play a role in OCD, and medications of the antidepressant variety (which often boost serotonin levels and can actually indirectly reduce dopamine production, as serotonin and dopamine can sometimes act in a "push-pull" manner, where an increase in one can decrease the other) are often utilized as a medication treatment option.

This is why medication treatment strategies, can get hairy with regards to this cingulate region. On one hand, we want to tune down the dopamine-destroying effects of the "Val" form of the COMT gene in an attempt to regulate attentional control, while at the same time keep this cingulate region in check so a chemical imbalance of serotonin doesn't force this region into overdrive and result in or exacerbate OCD behavior. That is why some of these studies tying down the effects of variations of specific genes to specific brain regions can be such useful tools in determining medication levels.

I am personally convinced that in the future, individual genetic screens will become more commonplace and will play much more of a role in governing the selection and dosage of specific ADHD medications. As we begin to pin down more and more gene forms to specific regions of the brain, we will certainly be armed with more tools to fine-tune individual treatments for ADHD and related disorders and eliminate some of the guess-work in selecting medications and other treatment options.

Add to Technorati Favorites

Thursday, December 4, 2008

Using Iron to Combat the Effects of Lead in ADHD

In the previous post, we were discussing the potential connection between lead exposure early in life and the subsequent onset of ADHD symptoms. We saw that higher lead levels are more likely to be associated with the hyperactive or impulsive symptoms of ADHD than the inattentive symptoms. At the moment, the amount of lead necessary to precipitate these negative symptoms is debatable, especially when individual variations are taken into account. However, a rough estimate of upper level lead limits can be found here. At the end of the post, I alluded to the fact that iron supplementation either via diet or pills may be effective as a possible treatment option. I will go into some of the details here:

Iron supplementation has been found to be useful in multiple cases regarding ADHD. Numerous studies have indicated that a large percentage of individuals with ADHD are iron deficient. Iron is responsible, among other things, for the synthesis and regulation of levels of the key brain chemical dopamine. Dopamine deficiencies are often seen in multiple brain regions (especially in the area behind the forehead, called the prefrontal cortex) in individuals with ADHD. Additionally, iron is a key component of hemoglobin, which is responsible for carrying oxygen in the blood to other organs and tissues in the body. Not surprisingly, many ADHD individuals have lower than average oxygen levels delivered to their brains.

Finally, other co-existing or comorbid disorders of ADHD also have been associated with iron deficiencies. One of the most notable is Restless Leg Syndrome (RLS), which is characterized by unwanted leg movements during rest, and is thought to be a major contributing factor to many types of sleep disorders and impairments. Individuals with ADHD have been shown to suffer from Restless Leg Syndrome at disproportionately high frequencies, when compared to the general population and iron deficiency may be a key contributing factor to Restless Leg Syndrome seen alongside ADHD.

However, one of the unexpected benefits of iron, especially with regards to ADHD, is its potentially protective role in reducing the negative effects of early lead exposure. In a couple of correspondences in the August 2007 edition of the journal Environmental Health Perspectives, some key findings were summarized involving the protective role of iron to lead-induced damage. One of them (based on previous literature) reported on how lead can negatively impact levels of free dopamine (which is often correlated with ADHD, as many of the positive effects derived from most stimulant medications is due to their abilities to boost levels of dopamine in between neuron cells).

Additionally, lead is also thought to inhibit the interactions of dopamine and its targets as lead can alter the presence of these targets or dopamine receptors. Both of these reduce proper dopamine function, and it is thought that adequate levels iron can offset some of these negative effects (on the flip side, iron deficiencies are thought to exacerbate several of these negative occurrences). Finally, iron is also thought to restore a balance in the blood-brain barrier, which serves as a sort of controlled gateway, regulating the passage of nutrients and necessary neuro-signaling chemicals into (as well as keeping toxic substances out of) the brain. The role of iron is thought to restore and offset some of the negative and damaging effects of lead on the blood-brain barrier, which is especially sensitive to toxins during the early stages of life and childhood.


There is some dispute and controversy over some of these findings, however. Another study (which is frequently cited in numerous journals on toxins/heavy metals and ADHD or cognitive disorders) was done on the protective effects of iron and zinc on Mexican schoolchildren exposed to lead showed no statistically significant results as far as improving cognitive function.

While I do not advocate excessive iron supplementation, (watch for upper limits which are described here), I do strongly suggest that pregnant and nursing mothers, as well as children and adults with ADHD do ensure that their iron intake is adequate. It is interesting to note that magnesium deficiency is also affiliated with increased ADHD symptoms. Due to the role of estrogen in improving magnesium retention, women require less daily magnesium than do men (a table of recommended daily magnesium intake can be found here). However, in iron, the opposite is true. Several factors, including less efficient iron binding and loss of iron due to menstruation and pregnancy result in higher iron requirements in pre-menopausal women. A summary of recommended iron levels for men women and children can be found here.

In addition to the potential role of iron in protecting against lead damage, will be discussing how boosting iron intake can offset the effects of ADHD and other related comorbid disorders in future posts.

Add to Technorati Favorites